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Simple Approximations for th~e
Longitudinal Magnetic Polarizabilities

of Some Small Apertures

NOEL A. McDONALD, SENIOR MEMBER, IEEE

Abstract — Simple approximations are given for the Iongitndinaf mag-

netic Polarizabllities of some small apertures of various shapes, as func-

tions of the aperture width to Ieng?h ratios. ‘f’he shapes considered are the

rectangle, diamond, rounded end slot, and ellipse, of which only the last

has an exact solution.

I. INTRODUCTION

I N TWO RECENT papers [1], [2], polynomial ap-

proximations were given for the electric and trans-

verse magnetic polarizabilities of small apertures of four

different shapes. For completeness, it would be desirable

to have similar expressions for the longitudinal magnetic

polarizabilities. The aperture shapes being considered in

this paper and the direction of the applied magnetic field

for the longitudinal magnetic polarizabilities are shown in

Fig. 1. In all cases W’< L.

In [1] and [2], an important feature was that useful

results were obtained simply from consideration of some

of the properties which exact solutions should possess. A

similar method for longitudinal magnetic polarizabilities

has not yet been found; therefore in the formulation of

approximate expressions more reliance has to be placed on

numerical values. The most comprehensive set of calcu-

lated values seems to be that of De Smedt [3], [4], who has

given the “dimensionless polarizability,” defined as the

aperture polarizability divided by (area) 3/2, for a range of

aspect ratios for all four shapes. In the case of the ellipse

only, an exact solution is available [5], [6], and experimen-

tal results for the rectangle, rounded end slot, and some

other shapes have been given by Cohn [7].

II. Fow OF APPROXIMATING FUNCTION

For each aperture shape, the longitudinal magnetic

polarizability can be expressed in the form

()Pm=f ; L3

in which f (W/L ) is a dimensionless polarizability coeffi-
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Fig. 1. Aperture shapes and direction of applied magnetic field. (a)
Rectangle. (b) Diamond. (c) Rounded end slot. (d) Ellipse.

cient. In the following, the aspect ratio W/L is designated

a, and the range of a is from O to 1.

Typical curves off (a) versus a show smooth, gradually

increasing functions for a values in the range of 0.1 to 1.0

[7]. For all aperture shapes f(a) must go to zero as a goes

to zero, for in that case the aperture closes up and the

polarizability goes to zero.

The first derivative f‘( a) of the polarizability coefficient

for each shape being considered can be expected to go to

infinity as a goes to zero. The reasoning which leads to

this conclusion is as follows. Consider first the rectangle,

and enclose it between the largest possible inscribed’ el-

lipse, which will have the same L and W as for the

rectangle, and an exterior ellipse which passes through all

four corners of the rectangle. It can be shown that if the

outer ellipse has the same aspect ratio and orientation as

the inner ellipse., its major and minor axes will be EL and

@W, respectively. The longitudinal magnetic polarizabil-

ity of the rectangle will lie between those of the interior

ellipse and the exterior ellipse. (Consider the electrolytic

tank analog experiment of Cohn [7]. If a metallic obstacle

representing a rectangular aperture had material removed

to make it into the inscribed ellipse, then the conductance

would have decreased; conversely, if material had been

added to make it larger, then the conductance would have

increased.) Because small aperture polaxizabilities vary as
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the cube of a characteristic dimension for apertures of

identical shapes, and the polarizability of the inner ellipse

goes to

TL3
.—

241n a as
(,+0

(see Section IV below) then the polarizability of the rectan-

gle is bounded by

24 in a
and – Kasa~O.

While those bounds are too far apart to give useful

numerical values, they do indicate that the first derivative

of the polarizability coefficient with respect to a goes to

infinity as a goes to zero. Similar reasoning applies to the

diamond and the rounded end slot.

The range of a of interest in this paper is from O to 1,

i.e., for W < L. However in principle the ranges of a for

the rectangle, diamond, and ellipse are from O to m, with

the section from 1 to co corresponding to the transverse

magnetic polarizability, whereas for the rounded end slot

a >1 has no meaning. The quadratic behavior of the

transverse magnetic polarizability coefficient for small a

[2] corresponds to a linear behavior for large a when

interpreted as a longitudinal polarizability coefficient. (The

coefficients are multiplied by the cubes of different dimen-

sions to obtain the aperture polarizabilities.) Accordingly

the longitudinal polarizability coefficient for the rectangle,

diamond, and ellipse should go to a linear function as a

goes to infinity.

A simple function which has the three desired proper-

ties:

f(~)+O as a~O

f’(a)+m as a~O

and

f(a) ~ constant X a as a ~ cc

is

f(a) = a~
()in l+–

a

in which a and b are constants and in denotes the natural

logarithm. The linear dependence for large a is a conse-

quence of

ln(l+x)ax as xaO.

A simple routine was used to obtain the constants a and b

for each aperture shape by fitting to De Smedt’s numerical

values obtained from [3]. Note that if instead the ap-

proximating function was a polynomial or a rational func-

tion comprising one polynomial divided by another, then

as a goes to zero the approximating function would go to

d’, where n is a positive integer, and the ratio of (exact

value)/(approximate value) would go to infinity.

III. RESULTS

For the rectangle, De Smedt [3] gives numerical values

for the dimensionless polarizabilities for a equal to 0.1,

0.2, 0.333, 0.5, 0.75, 0.8, and 1.0. The corresponding

polarizability coefficients were calculated,

proximation function

and ‘the ap~

0.132
f(a) =

0.660

()
in l+—

c1

gives agreement of better than 0.4 percent for those a

values. It also gives agreement of better than 0.9 percent

with Cohn’s experimental results for a = 0.1, 0.15, 0.2, 0.3,

0.5, 0.75, and 1.0 [7].

For the diamond De Smedt’s calculations are for the

same a values as the rectangle, and the corresponding

approximation function is

0.109
f(a) =

2.33

()
in l+—

a

with a discrepancy of less than 1.3 percent.

In the case of the rounded end slot, the computed values

from [3] are for a = 0.1, 0.2, 0.333, 0.5, and 0.8 and the

exact value is known for LY= 1.0, which is a circle. The

approximation

0.195
f(a) =

2.12

()
in l+—

a

provides agreement of better than 3.1 percent with

De Smedt’s calculated values and 3.8 percent with Cohn’s

experimental results for a equal to 0.1, 0.15, 0.2, 0.3, 0.5,

0.75, and 1.0. These are the largest discrepancies for any of

the four shapes and are probably caused by the large a

behavior of the approximating function not being applica-

ble to the rounded end slot. The agreement for this shape

can be improved if a small quadratic term is included in

the numerator. The approximation function

0.187 +0.052a(l – a)
f(a) =

2.12

()
in l+—

c1

gives agreement of better than 1.4 percent with De Smedt’s

calculated values and 1.7 percent with Cohn’s experiments.

For the ellipse, which has an exact solution (see Section
IV below) an approximation function was derived using

the exact values for a = 0.1, 0.2, 0.3, 0.5, 0.8, and 1.0.

Although much more information is available for the

ellipse, those a values were selected to be typical in

number and spacing of those used for the other shapes, so

that the ellipse could be used as a test case. The approxi-
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mation function derived from those values was

0.115
f(a) =

1.00

( )

in l+—
a

with an error of less than 0.9 percent.

This function was then checked against the exact values

at a = 0.4, 0.6, 0.7, and 0.9, and the maximum error was
still less than 0.9 percent. Such good agreement is to be

expected on that smooth part of the curve. The next check

was for the very sma~ a region, between O and 0.1. The

error was 1.8 percent at a = 0.06, and 4.1 percent at

a = 0.02. In the limit as a ~ O, the error goes to 12 percent.

For this particular case of the ellipse, it i’s possible’ to

improve the accuracy for extremely small a by setting the

numerator of the approximating function to 0.131 ( =

n/24) and adjusting the other parameter. However the

improved accuracy for very’ small a is at the expense of

decreased accuracy for larger a; therefore a better ap-

proach for small a is to use the known approximation

given in Section IV below.

It is likely that similar percentage errors for extremely

small a values would also occur for the other three shapes.

Such a values are not likely to be found in microwave

devices, but could arise in electromagnetic compatibility

calculations for the electromagnetic field penetration

through a crack or imperfect seam. Fortunately the accu-

racy required in those applications is usually not as strin-

gent as’ in microwave devices. Another consideration is

that of tolerances and measurement accuracy. The fact

that aperture polarizabilities vary as the cube of a char-

acteristic dimension is recognized as leading to significant

tolerancing problems in some microwave devices. The er-

rors referred to above for extremely small values of a are

associated with f ‘(a) approaching co, the most extreme

tolerance and measurement situation possible.

IV. POLARIZABILITY OF AN ELLIPSE

The exact longitudinal magnetic polarizability coeffi-

cient for an ellipse, in the notation of this paper, is

n(l–az)

24[K(@+E(d~)]

which for small’ a is approximately equal to

7r(l- a*)

24[ln(4/a)–1] “

The error for this approximation at a = 0.3 is 3.7 percent;

at a = 0.2 it is 1.5 percent and at a = 0.1 it is 0.33 percent.

At extremely small values of a the in a term dominates in

the denominator and the function goes to

‘n
—

241na “

The exact transverse magnetic polarizability coefficient for

1143

an ellipse was given in [2] aHd the electric polarizability

coefficient which was referred to in [1] but not stated is

71a2

24E(fi~) “

In all of these expressions K and E are the complete

elliptic integrals of the first and second kinds, respectively,

as defined in [8]. It should be nclted that the definitions in

[8] are not the same as in [9]. This difference is known to

workers in the field but may not be more widely known.

V. CONCLtJSIONS

Simple approximations have been given for the longitu-

dinal magnetic polarizability coefficients of some small

apertures. Multiplication of the coefficients by L3 gives the

polarizabilities of the respective apertures. Although some

reasoning was used to select a suitable form of approxima-

tion function, that form is not unique; nor does there seem

to be an associated physical interpretation (such as the

polarizability per unit length used in [1] and [2]).

The expressions have been obtained by a curve-fitting

process applied to De Smedt’s numerical data. Accord-

ingly the absolute accuracy is a combination of the accu-

racies of the curve fitting and the data. The latter are

understood to have an accuracy of the order of 1 percent.

Although the large a behawior was used to select a

suitable form of approximation function for three of the

shapes, no data points were used for a >1 and accordingly

better accuracy is obtained by regarding cases of a >1 “as

transverse polarizabilities and using the expressions in [2].

VI. POSTSCRIPT

Since the above material was prepared, the author has

become aware of another two sets of calculated values for

the polarizability coefficients of rectangular apertures [10],

(11]. In particular the electric ancl magnetic coefficients for

a square are given in [11] as 0.1138 ‘and 0.2600, respec-

tively, compared with 0.1126 used in [1] and 0.2596 used in

[2] and in this paper.
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