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Simple Approximations for the
Longitudinal Magnetic Polarizabilities
of Some Small Apertures

NOEL A. McDONALD, SENIOR MEMBER, IEEE

Abstract —Simple approximations are given for the longitudinal mag-
netic polarizabilities of some small apertures of various shapes, as func-
tions of the aperture width to length ratios. The shapes considered are the
rectangle, diamond, rounded end slot, and ellipse, of which only the last
has an exact solution.

1. INTRODUCTION

N TWO RECENT papers [1], [2], polynomial ap-

proximations were given for the electric and trans-
verse magnetic polarizabilities of small apertures of four
different shapes. For completeness, it would be desirable
to have similar expressions for the longitudinal magnetic
polarizabilities. The aperture shapes being considered in
this paper and the direction of the applied magnetic field
for the longitudinal magnetic polarizabilities are shown in
Fig. 1. In all cases W< L.

In [1] and [2], an important feature was that useful
results were obtained simply from consideration of some
of the properties which exact solutions should possess. A
similar method for longitudinal magnetic polarizabilities
has not yet been found; therefore in the formulation of
approximate expressions more reliance has to be placed on
numerical values. The most comprehensive set of calcu-
lated values seems to be that of De Smedt [3], [4], who has
given the “dimensionless polarizability,” defined as the
aperture polarizability divided by (area)’/?, for a range of
aspect ratios for all four shapes. In the case of the ellipse
only, an exact solution is available [5], [6], and experimen-
tal results for the rectangle, rounded end slot, and some
other shapes have been given by Cohn [7].

II. ForM OF APPROXIMATING FUNCTION

For each aperture shape, the longitudinal magnetic
polarizability can be expressed in the form

P ud L
m f L )
in which f(W/L) is a dimensionless polarizability coeffi-
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Fig. 1. Aperture shapes and direction of applied magnetic field. (a)

Rectangle. (b) Diamond. (c) Rounded end slot. (d) Ellipse.

cient. In the following, the aspect ratio W/L is designated
a, and the range of a is from 0 to 1.

Typical curves of f(a) versus « show smooth, gradually
increasing functions for a values in the range of 0.1 to 1.0
[7]. For all aperture shapes f(a) must go to zero as a goes
to zero, for in that case the aperture closes up and the
polarizability goes to zero.

The first derivative f'(«a) of the polarizability coefficient
for each shape being considered can be expected to go to
infinity as « goes to zero. The reasoning which leads to
this conclusion is as follows. Consider first the rectangle,
and enclose it between the largest possible inscribed el-
lipse, which will have the same L and W as for the
rectangle, and an exterior ellipse which passes through all
four corners of the rectangle. It can be shown that if the
outer ellipse has the same aspect ratio and orientation as
the inner ellipse, its major and minor axes will be v2 L and
V2 W, respectively. The longitudinal magnetic polarizabil-
ity of the rectangle will lie between those of the interior
ellipse and the exterior ellipse. (Consider the electrolytic
tank analog experiment of Cohn [7]. If a metallic obstacle
representing a rectangular aperture had material removed
to make it into the inscribed ellipse, then the conductance
would have decreased; conversely, if material had been
added to make it larger, then the conductance would have
increased.) Because small aperture polarizabilities vary as
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the cube of a characteristic dimension for apertures of
identical shapes, and the polarizability of the inner ellipse
goes to

al?
" 24na

as a—0

(see Section IV below) then the polarizability of the rectan-
gle is bounded by

2\/577L3
24lna

al?

- 0.
e &

While those bounds are too far apart to give useful
numerical values, they do indicate that the first derivative
of the polarizability coefficient with respect to a goes to
infinity as a goes to zero. Similar reasoning applies to the
diamond and the rounded end slot.

The range of « of interest in this paper is from 0 to 1,
i.e., for W< L. However in principle the ranges of « for
the rectangle, diamond, and ellipse are from 0 to oo, with
the section from 1 to oo corresponding to the transverse
magnetic polarizability, whereas for the rounded end slot
a«>1 has no meaning. The quadratic behavior of the
transverse magnetic polarizability coefficient for small «
[2] corresponds to a linear behavior for large o when
interpreted as a longitudinal polarizability coefficient. (The
coefficients are multiplied by the cubes of different dimen-
sions to obtain the aperture polarizabilities.) Accordingly
the longitudinal polarizability coefficient for the rectangle,
diamond, and ellipse should go to a linear function as «
goes to infinity.

A simple function which has the three desired proper-
ties:

a—0

f(a) >0 as
f'(a) >0 as a—0
and

f(a) —constant X @ as a—>oo

18

£(a) =1_(1'+T)

in which a and b are constants and In denotes the natural
logarithm. The linear dependence for large o« is a conse-
quence of

In(l1+x)—>x as x—0.

A simple routine was used to obtain the constants a and b
for each aperture shape by fitting to De Smedt’s numerical
values obtained from [3]. Note that if instead the ap-
proximating function was a polynomial or a rational func-
tion comprising one polynomial divided by another, then
as a goes to zero the approximating function would go to
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«", where n is a positive integer, and the ratio of (exact

value) /(approximate value) would go to infinity.

III. RESULTS

For the rectangle, De Smedt [3] gives numerical values
for the dimensionless polarizabilities for a equal to 0.1,
0.2, 0.333, 0.5, 0.75, 0.8, and 1.0. The corresponding
polarizability coefficients were calculated, and the ap-
proximation function

fla) =

0.132

0.660
In (1+ )

a

gives agreement of better than 0.4 percent for those «
values. It also gives agreement of better than 0.9 percent
with Cohn’s experimental results for o= 0.1, 0.15, 0.2, 0.3,
0.5, 0.75, and 1.0 {7}.

For the diamond De Smedt’s calculations are for the
same « values as the rectangle, and the corresponding
approximation function is

1+ ==
44

fle) = m( 0.1(;9.33 )

with a discrepancy of less than 1.3 percent.

In the case of the rounded end slot, the computed values
from [3] are for «=0.1, 0.2, 0.333, 0.5, and 0.8 and the
exact value is known for a=1.0, which is a circle. The
approximation

0.195
f(a) = 712
In (1 + ———)

o

provides agreement of better than 3.1 percent with
De Smedt’s calculated values and 3.8 percent with Cohn’s
experimental results for o equal to 0.1, 0.15, 0.2, 0.3, 0.5,
0.75, and 1.0. These are the largest discrepancies for any of
the four shapes and are probably caused by the large «
behavior of the approximating function not being applica-
ble to the rounded end slot. The agreement for this shape
can be improved if a small quadratic term is included in
the numerator. The approximation function

0.187+0.052a(1 - a)

e o[ 2]

o

gives agreement of better than 1.4 percent with De Smedt’s
calculated values and 1.7 percent with Cohn’s experiments.

For the ellipse, which has an exact solution (see Section
IV below) an approximation function was derived using
the exact values for a=0.1, 0.2, 0.3, 0.5, 0.8, and 1.0.
Although much more information is available for the
ellipse, those a values were selected to be typical in
number and spacing of those used for the other shapes, so
that the ellipse could be used as a test case. The approxi-
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mation function derived from those values was

0.115
fle)= 100 )

In (1 + —
- [4
with an error of less than 0.9 percent.

This function was then checked against the exact values
at a=04, 0.6, 0.7, and 0.9, and the maximum error was
still less than 0.9 percent. Such good agreement is to be
expected on that smooth part of the curve. The next check
was for the very small a region, between 0 and 0.1. The
error was 1.8 percent at a=0.06, and 4.1 percent at
a = 0.02. In the limit as a — 0, the error goes to 12 percent.

For this particular case of the ellipse, it is possible to
improve the accuracy for extremely small a by setting the
numerator of the approximating function to 0.131 (=
7/24) and adjusting the other parameter. However the
improved accuracy for very small a is at the expense of
decreased accuracy for larger «; therefore a better ap-
proach for small «a is to use the known approximation
given in Section IV below. '

It is likely that similar percentage errors for extremely
small & values would also occur for the other three shapes.
Such a values are not likely to be found in microwave
devices, but could arise in electromagnetic compatibility
calculations for the electromagnetic field penetration
through a crack or imperfect seam. Fortunately the accu-
racy required in those applications is usually not as strin-
gent as in microwave devices. Another consideration is
that of tolerances and measurement accuracy. The fact
that aperture polarizabilities vary as the cube of a char-
acteristic dimension is recognized as leading to significant
tolerancing problems in some microwave devices. The er-
rors referred to above for extremely small values of « are
associated with f’(a) approaching oo, the most extreme
tolerance and measurement situation possible.

IV. POLARIZABILITY OF AN ELLIPSE

The exact longitudinal magnetic polarizability coeffi-
cient for an ellipse, in the notation of this paper, is

7(1- a?)
24| K(V1-?) - E(/1- o?)]
which for small' « is approximately equal to
7(1—a?)
24[In(4/a)—1]

The error for this approximation at «= 0.3 is 3.7 percent;
at a=0.2 it is 1.5 percent and at a = 0.1 it is 0.33 percent.
At extremely small values of a the Ina term dominates in
the denominator and the function goes to

T

" 24Ina’

The exact transverse magnetic polarizability coefficient for
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an ellipse was given in [2] and the electric polarizability
coefficient which was referred to in [1] but not stated is

7T¢X2

UE(WV1-a?)

In all of these expressions K and E are the complete
elliptic integrals of the first and second kinds, respectively,
as defined in [8]. It should be noted that the definitions in
[8] are not the same as in [9]. This difference is known to
workers in the field but may not be more widely known.

V. CONCLUSIONS

Simple approximations have been given for the longitu-
dinal magnetic polarizability coefficients of some small
apertures. Multiplication of the coefficients by L? gives the
polarizabilities of the respective apertures. Although some
reasoning was used to select a suitable form of approxima-
tion function, that form is not unique; nor does there seem
to be an associated physical interpretation (such as the
polarizability per unit length used in [1] and [2]).

The expressions have been obtained by a curve-fitting
process applied to De Smedt’s numerical data. Accord-
ingly the absolute accuracy is a combination of the accu-
racies of the curve fitting and the data. The latter are
understood to have an accuracy of the order of 1 percent.

Although the large a behavior was used to select a
suitable form of approximation function for three of the
shapes, no data points were used for a >1 and accordingly
better accuracy is obtained by regarding cases of a>1 as
transverse polarizabilities and using the expressions in [2].

VI. POSTSCRIPT

Since the above material was prepared, the author has
become aware of another two sets of calculated values for
the polarizability coefficients of rectangular apertures [10],
[11]. In particular the electric and magnetic coefficients for
a square are given in [11] as 0.1138 and 0.2600, respec-
tively, compared with 0.1126 used in [1] and 0.2596 used in
[2] and in this paper.
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